Biochemical Characteristics and Variable Alginate-Degrading Modes of a Novel Bifunctional Endolytic Alginate Lyase

نویسندگان

  • Yuanyuan Cheng
  • Dandan Wang
  • Jingyan Gu
  • Junge Li
  • Huihui Liu
  • Fuchuan Li
  • Wenjun Han
چکیده

Bifunctional alginate lyases can efficiently degrade alginate comprised of mannuronate (M) and guluronate (G), but their substrate-degrading modes have not been thoroughly elucidated to date. In this study, we present Aly1 as a novel bifunctional endolytic alginate lyase of the genus Flammeovirga The recombinant enzyme showed optimal activity at 50°C and pH 6.0. The enzyme produced unsaturated disaccharide (UDP2) and trisaccharide fractions as the final main alginate digests. Primary substrate preference tests and further structure identification of various size-defined final oligosaccharide products demonstrated that Aly1 is a bifunctional alginate lyase and prefers G to M. Tetrasaccharide-size fractions are the smallest substrates, and M, G, and UDP2 fractions are the minimal product types. Remarkably, Aly1 can vary its substrate-degrading modes in accordance with the terminus types, molecular sizes, and M/G contents of alginate substrates, producing a series of small size-defined saturated oligosaccharide products from the nonreducing ends of single or different saturated sugar chains and yielding unsaturated products in distinct but restricted patterns. The action mode changes can be partially inhibited by fluorescent labeling at the reducing ends of oligosaccharide substrates. Deletion of the noncatalytic region (NCR) of Aly1 caused weak changes of biochemical characteristics but increased the degradation proportions of small size-defined saturated M-enriched oligosaccharide substrates and unsaturated tetrasaccharide fractions without any size changes of degradable oligosaccharides, thereby enhancing the M preference and enzyme activity. Therefore, our results provided insight into the variable action mode of a novel bifunctional endolytic alginate lyase to inform accurate enzyme use.IMPORTANCE The elucidated endolytic alginate lyases usually degrade substrates into various size-defined unsaturated oligosaccharide products (≥UDP2), and exolytic enzymes yield primarily unsaturated monosaccharide products. However, it is poorly understood whether endolytic enzymes can produce monosaccharide product types when degrading alginate. In this study, we demonstrated that Aly1, a bifunctional alginate lyase of Flammeovirga sp. strain MY04, is endolytic and monosaccharide producing. Using various sugar chains as testing substrates, we also proved that key factors causing Aly1's action mode changes are the terminus types, molecular sizes, and M/G contents of substrates. Furthermore, the NCR fragment's effects on Aly1's biochemical characteristics and alginate-degrading modes and corresponding mechanisms were discovered by gene truncation and enzyme comparison. In summary, this study provides a novel bifunctional endolytic tool and a variable action mode for accurate use in alginate degradation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Bifunctional Endolytic Alginate Lyase with Variable Alginate-Degrading Modes and Versatile Monosaccharide-Producing Properties

Endo-type alginate lyases usually degrade alginate completely into various size-defined unsaturated oligosaccharide products (≥disaccharides), while exoenzymes primarily produce monosaccharide products including saturated mannuronate (M) and guluronate (G) units and particularly unsaturated Δ units. Recently, two bifunctional alginate lyases have been identified as endolytic but M- and G-produc...

متن کامل

Screening of Alginate Lyase-Producing Bacteria and Optimization of Media Compositions for Extracellular Alginate Lyase Production

Background: Alginate is a linear polysaccharide consisting of guluronate (polyG) and mannuronate (polyM) subunits. Methods: In the initial screening of alginate-degrading bacteria from soil, 10 isolates were able to grow on minimal medium containing alginate. The optimization of cell growth and alginate lyase (algL) production was carried out by the addition of 0.8% alginate and 0.2-0.3 M NaCl ...

متن کامل

Biochemical and computational study of an alginate lyase produced by Pseudomonas aeruginosa strain S21

Objective(s): Alginates play a key role in mucoid Pseudomonas aeruginosa colonization, biofilm formation, and driving out of cationic antibiotics. P. aeruginosa alginate lyase (AlgL) is a periplasmic enzyme that is necessary for alginate synthesis and secretion. It also has a role in depolymerization of alginates. Using AlgLs in cystic fibrosis patients along with anti...

متن کامل

Screening of Alginate Lyase-Producing Bacteria and Optimization of Media Compositions for Extracellular Alginate Lyase Production

BACKGROUND Alginate is a linear polysaccharide consisting of guluronate (polyG) and mannuronate (polyM) subunits. METHODS In the initial screening of alginate-degrading bacteria from soil, 10 isolates were able to grow on minimal medium containing alginate. The optimization of cell growth and alginate lyase (algL) production was carried out by the addition of 0.8% alginate and 0.2-0.3 M NaCl ...

متن کامل

Characterization of an Eukaryotic PL-7 Alginate Lyase in the Marine Red Alga Pyropia yezoensis

BACKGROUND Alginate lyases belonging to polysaccharide lyase family-7 (PL-7) are the most well studied on their structures and functions among whole alginate lyases. However, all characterized PL-7 alginate lyases are from prokaryotic bacteria cells. Here we report the first identification of eukaryotic PL-7 alginate lyase from marine red alga Pyropia yezoensis. METHODS The cDNA encoding an a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 83  شماره 

صفحات  -

تاریخ انتشار 2017